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Locating Resonances for Axiom A Dynamical Systems 
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For a class of differentiable dynamical systems (called Axiom A systems ) it has 
been shown by Pollicott and the author that correlation functions have Fourier 
transforms which are meromorphic in a strip. The poles (or resonances) are, 
however, not easy to locate. This note reviews the results which are known and 
discusses a simple model where the position of resonances can be estimated. The 
effect of noise is also discussed. 
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1. I N T R O D U C T I O N  

A differentiable dynamical system ( f ' )  on a compact manifold M is a 
family of differentiable maps f ' :  M ~ M such that f o  = identity and f s  +~ = 

f s f ,  We allow t to vary over the reals (continuous time case) or the 
integers (discrete time case), possibly with the restriction t ~> 0. For  suitable 
Xo the following time averages exist 

lim A ( f ' x o )  dt = ( A )  = p(dx)  A ( x )  (1) 

for all continuous A: M---, ~, and (1) defines a probability measure p, 
ergodic with respect to ( f ' ) .  In the discrete time case, the integral in (1) is 
replaced by a sum~ We assume that a natural choice of p has been made, 
corresponding to the fact that time averages are often well defined in 
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physical applications. If B, C: M--. N are differentiable functions, a 
correlation function Psc  is defined by 

= p ( ( B o f ' )  C) - p (B)  p(C). 

Its Fourier transform is 

i 
o o  

PBc(CO) = dt e TM Psc( t )  
- - o o  

If B =  C, this Fourier transform is known as the power spectrum of the 
signal t ~ B ( f ' xo ) .  Note that, in the discrete time case, t~Bc becomes a 
periodic function of period 2~. 

For a particular class of dynamical systems, called Axiom A Systems, 
it has been possible to prove that PBc is meromorphic in a strip IIm col < 6 
(see Pollicot(12) and Ruelle(17'18)). The poles of r may be interpreted as 
resonances of the dynamical system; their residues depend on B and C, but 
their positions do not. Unfortunately, little is known in general on the 
position of the resonances. For mixing systems (i.e., if PAc ~ 0 at infinity 
for all choices of B, C) there are no poles of PBc on the real axis. In the dis- 
crete time mixing case, periodicity of Psc implies that there are no poles in 
the strip ]Imco[ <~ for sufficiently small ~ > 0  (this corresponds to the 
known fact that p B c ~ O  exponentially at infinity, see Ruelle(13)). In the 
continuous time case, also called f low, the poles can come arbitrarily close 
to the real axis (i.e., for a pole co, Im co may be arbitrarily small when Re co 
is sufficiently large). Unfortunately, the only small class of examples known 
at present in which the poles come close to the real axis does not corres- 
pond to an attractor. (See Ruelle(16); naturally here Psc  does not tend 
exponentially to zero at infinity.) On the other hand, only one small class 
of examples is known where Psc  does tend to zero exponentially at infinity, 
and there are no poles of Psc in a strip jim co[ < e. (This was proved by 
Collet, Epstein, and Gallavotti (4) for the geodesic flow on a manifold of 
constant negative curvature. Nothing is known when the curvature is non- 
constant.) 

From the above, it is clear that there is a serious lack of examples of 
Axiom A systems for which the resonances can be located. In the present 
note we shall discuss examples for which the position of resonances is 
accessible numerically and even analytically. 
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2. E X P A N D I N G  M A P S  A S S O C I A T E D  W I T H  A X I O M  A S Y S T E M S  

The main reason why Axiom A dynamical systems are much more 
accessible to study than general differentiable dynamical systems is because 
of the existence of a technical tool called symbolic dynamics (based on 
Markov partitions; see Bowen(2)). Here we shall bypass the study of 
Axiom A systems and directly discuss a problem reformulated with the help 
of a Markov partition. 

To be specific, we start from an Axiom A f low on M, and first restrict 
it to a basic set A (see Smale (~9) and Bowen ~ for definitions). A differen- 
tiable function A: M ~ ~ is also given, which specifies the ergodic measure 
p: p is the Gibbs state for A[A. One can show that the time averages (1) for 
Lebesgue almost all x0 near an Axiom A attractor are given by a particular 
Gibbs state p called S R B  measure. 2 On the other hand, A = 0 yields the 
measure o f  maximum entropy on A. Here, however, we proceed with 
general Gibbs states. To the above setup, a Markov partition associates a 
quadruple (s g, r, a) as follows: 0 is a compact metric space, g: f2 ~ f2 is 
an expanding map (see below, g is usually not invertible), and r, a: s ~ 
are Lipschitz continuous functions such that r is strictly positive. (Lipschitz 
continuous means that I r (4 ) - r ( r / )  I ~<const dist(~, t/), and similarly for a). 
Consider now the set 

{(~, u)~s x ~: 0~< u~<r(~)} 

and identify (4, r(4)) to (g4, 0) to obtain a space t2*. For  t~>0 let 

g*'(~, u) = (gnU, u + t -  r(4) -- r(g4) . . . . .  r(gn xr 

where n/> 0 is the largest integer such that 

u + t > ~ r ( 4 ) + r ( g 4 ) +  "'" + ( g "  1~) 

We have just defined a semiflow (g ' f )  on s which is the new guise of the 
original Axiom A flow ( f t )  on A. The function a serves to define a measure 
on f2 corresponding to the Gibbs state defined by A on A. 

How are 12, g, r obtained? Let us first say that a Markov partition for 
the flow ( f ' )  (restricted to A) consists of a finite number of pieces of hyper- 
surfaces transversal to the flow. We call (Ga) the matrix with elements 
t~a = 1 if the orbit ( f ' )  can successively cross ~ and fl, zero otherwise. Let 
( " ' ~ - 1 ,  4o, ~1, 42"" )be the sequence of hypersurfaces successively 
crossed by the orbit ( f i x )  so that the first crossing at positive time is that 
of ~1. Up to some controllable ambiguities, it is possible to represent x by 

2 See Ref. 5 for details and references. 
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the sequence ~ = ( ' " 4  1, 40, 31, ~2"'') and the time u elapsed since 
crossing 4o (i.e., f - " x  E 4o). Note that 0 ~< u ~< r(~) where the ceiling function 
r is the time between crossings of hypersurfaces of the Markov partition. 
One can arrange that r depends only on the half infinite sequence 4 = 
(40, 41,..). We write then r (~)=r(~) .  We also define f2 to be the space of 
half infinite sequences 4, with the condition te,r = 1 for all n ~> 0, and with 
the metric 

d(~, t / )= exp[ - K m a x { k :  4k = ~k} ] (2) 

for some K >  0. Then the map 

g: (4o, 41, 42,-)  --* (41, 42,-)  

is expanding in the sense that there are C >  1 and e > 0  such that 
dist(g4, gq)>~Cdist(4, tl) when dist(~,~/)<e. For  suitable K in (2) the 
functions r and a are Lipschitz (the exact way in which a is defined will not 
be of concern to us). 

An important variation of the construction sketched above is when 
everything can be made analytic, i.e., when f2 can somehow be embedded 
in a complex manifold so that g, r, a extend to holomorphic functions (see 
Ruelle, (14) Mayer, (1~ and Fried(6)). While this situation is admittedly 
special, it is interesting and particularly suited to numerical investigation as 
we shall see in the example of Section 4. 

3. L O C A T I N G  R E S O N A N C E S  

As we have said, the position of the poles of/58c does not depend on 
B, C (but the residues depend on B, C, and might accidentally vanish). 
These poles come in complex conjugate pairs 3 c%, o5~ where we may 
assume that 

0 < I m c % < 6  

if the Axiom A flow ( f t )  is mixing. We shall now characterize the co~ in 
different ways in terms of (f2, g, r, a). 

First, corresponding to p, there is an invariant probability measure p* 
for the semiflow (g . t )  on O*, and we can define correlation functions 

p*v( t) = p*( ( Uo g . t )  . V) - p*( U) p*( V) 

3 In fact, with r also co~, -o9~, --o5~ are poles oft~Bc. 
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When U, V are nice functions on g?* (say Lipschitz continuous), the 
Fourier transform 

P*v(co) = f o  dt d~ ) 

is holomorphic for Im co > 0, meromorphic for Im co > - 3 ,  and its poles 
are located at the same positions eS~ as the poles of #3Bc with negative 
imaginary part. This first characterization of the coo, however, is not 
extremely useful. 

A second characterization is in terms of an operator ~ (transfer 
ma t r i x )  acting on the Banach space of Lipschitz functions on g?, We define 

(LPb~0)((l, ~2,--.) = ~ ~0(r r ~2,.--) exp b(r ~1, ~2,...) (3) 
40 

where b is a complex Lipschitz function on s and the sum is over those r 
such that tr = 1. [We assume that the matrix (t~n) to some power N has 
all its matrix elements >0  (mixing property). The Markov partition can 
always be chosen such that this is true.] One can show that there is a real 
number P(Re b) such that 

(i) The part of the spectrum of LPb in {z: ]zl > e  P(Reb)-K} (with K as 
in (2)) consists of discrete eigenvalues with finite multiplicities. 

(ii) If b is real, then e P(b) is a simple eigenvalue, and there are no other 
eigenvalues with modulus > e P(v). 

See Pollicot ~ for (i) and Ruelle (13) for (ii). See also Keller (7) for 
related results. 

Let now b = a -  sr, where a, r are as above, and s is a complex num- 
ber. We shall be interested in those values of s such that ~a sr has 1 as an 
eigenvalue. In particular P* is such a value if P* is real and P(a  - P ' r )  = O. 
It is known that P* exists and is unique; in the special case corresponding 
to SRB measures we have P * =  0. 

Pro0osition. Consider a mixing Axiom A flow (f ' ) .  The poles co~ 
of #3~c with 0 < Im co o < 3 are precisely the numbers i (P* - s) where s # P* 
is such that Re s > P * - 6  and 2~ ~r has 1 as an eigenvalue. 

Our third and last characterization of the co~ will be in terms of zeta 
functions. 

Let /(7) be the period of a periodic orbit 7 of ( f ' )  contained in the 
basic set 7. We define 

~A(S) = 1 -- exp ( A ( f ' x ~ )  - s) dt 
~o 
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where x; is any point of 7; the product is over all periodic orbits 7 and con- 
verges for sufficiently large Re s. One can similarly define a zeta function ( 
for the semiflow (g,t) ,  and this can be rewritten in terms of the periodic 
points of g: O--* O. We have 

~ ,  n - - I  
~(s )=exp  -1 ~ exp ~ [a(g~)-sr(gk~)] 

n=lnr k = 0  

which again converges for sufficiently large Re s. For  suitably chosen 6 one 
can prove the following: ~A and ( extend meromorphically to Re s > P* - 6 
and have the same poles in this region; for Re s > P* both ~A and ~ are 
holomorphic. 

Proposition. Consider a mixing Axiom A flow (ft) .  The poles o)~ 
of/~Bc with 0 < Im ~o~ < 6 are precisely the numbers i(P* - s) where s r P* 
is such that Re s > P* - 6 and s is a pole of ffA o r  ~. 

The reader must be referred to Pollicott ~2~ and Ruelle (~8) for the 
proofs, which are not very easy. 

Note that if 0 < e < 6,/SBc is analytic in the strip IIm ~ol < e if and only 
if the numbers s r P* such that ~ _ ~  has eigenvalue 1 (or at which ~(s) 
has a pole) satisfy Re s ~< P* - e. 

4. AN EXAMPLE: EXPANDING M A P S  OF THE CIRCLE 

We discuss here a simple situation, where the transfer matrix 5e and 
the zeta function ( can be written fairly explicitly, but the (n~ are still not 
easily located. 

We take f2 to be a circle (i.e., the interval [0, 2g] with 0 and 2~ iden- 
tified), g is multiplication by an integer q ~>2 (i.e., g~ = q~ (mod 2re)), a 
vanishes, and r is a real analytic periodic function. It would be easy to 
reformulate these data in terms of symbolic dynamics. 4 We prefer to use 
(2, g, r as given, preserving the fact that g and r real analytic. Suppose that 
r is analytic in the strip IIm 31 < ~c, and note that the operator Y of (3) is 
now given by 

(L, qq))(~) = ~ ~o(t/) e x p ( - s r ( q ) )  
r/: g~7 = 

=kq~=iq~(~+2krC) exp(-sr(~+2krc)) (4) 

4 Using the "Markov partition" of (2 into the intervals [0, 2re/q],..., [ (q-1)2~r /q ,  2~] we 
replace 4 by the sequence (41, ~2,.--) such that 4, = P when f "4  ~ [p2g/q, (p + 1)27r/q]. Note 
that 4142"'" is the representation of 4/2~ in basis q. 
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If q) is periodic and analytic in the strip lira ~1 < 2, then 5~q) is periodic and 
analytic in the strip IIm ~I < min(~:, q2). Choosing 2 < ~:, we see that  5 ~ is 
analyticity improving. One can show easily that  s is a compact  opera tor  
on the Banach space (with the uniform norm)  of periodic functions which 
are cont inuous for IIm ~] ~<2, and ho lomorphic  for lira ~.1 <2 .  [ F o r  
instance, if r -= log(1 + cd - 2c~ cos ~), with ~ > 0, we may take ~c = Ilog c~l.] 
Note  that, writing 

e k ( ~ )  = e  ikr e sr  ~ -  ~ a~ek 
k =  oo 

we have 

~ ' e  m = q 
k =  - - o o  

For  the zeta function we have 

akq m f k 

oo 1 n--I  
; ( s ) = e x p  Z - Z exp Z --sr(gk~) 

n= 1 F/ ~:gn~=~ k=O 

~176 l q ~ l  I n - - l  ( 2 7 [ , q k ~  
= e x p  ~ - exp - s  ~ r m 

n = l / T m = l  k=O q ' - l J J  

= 1 - e x p  - s  r( ~7 
n = l  " k = l  

In the r ight-hand side, the second product  is over all periodic orbits of 
period n for ~ ~ q~ (mod 2re), and ~.r is an arbi t rary element of 7 [we may 
thus write ~ = (m/q ~ - 1 ) 2re, where 0 < rn < qn _ 1 and m does not  divide 
q n  1]. The zeta function may be rewritten as 

do(S) 
~(s) = - -  (5) 

dl(s) 

where 

do(s ) = exp 
1 F/ 

dl(s) = exp 
1 /7 

l n--I  

: ~ = r  d e t ( D g " -  1) expk=o  ~ -sr(gk~) (6) 

E I Dg~ exp ~ --sr(gk~) (7) 
g.~ r det (Dg ~ 1) k=o 

and Dg n is the derivative of gn at ~, so that  Dg n = qn and det(Dg n - 1) = 
qn _ 1. Using an extension of the Fredholm theory due to Grothendieck  we 
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may interpret do as the Fredholm determinant of (1-o//go), where the 
operator Jr acting on holomorphic functions is given by 

(~'oqOo) = ~ (Oo(t/) exp( -s r ( r l ) )  
r l :  g q  = 

Similarly, da is the Fredholm determinant of (1 - J/ l) ,  where Jg~ is like ~o ,  
but acting on 1-forms: 

(Jr = ~ D ~ g ' q ) l ( t l ) e x p ( - s r ( t l ) )  
r/: g r / - -  ~ 

The functions do and d~ are both entire analytic (see Ruelle ~14) and 
Fried(6), 5 and the poles of ~ are given by the zeros o l d  1. 

Notice that when r = 1, we have 

d l ( s  ) = 1 - q e - "  

which vanishes at log q + m'  2gi, m integer. If r is close to 1 there will be 
zeros of d 1 at Sm close to log q + m" 27ti, with So = P* and Im s m < P *  for 
k ~ 0 if the system is mixing. 

If we take r = 1 + ~ cos 3, a formal calculation shows that, to second 
order in c~, 

s m = log q + ~- (log q)2 _ e2~c2m2 + m- 1 +-~- log q �9 2rri 

This calculation is done by analogy with Ruelle (15~ and Widom, Bensimon, 
Kadanoff, and Schenker. (2~ If higher orders could be neglected (there is a 
problem of uniformity inm!),  we see that in the present situation the 
Fourier transform P~c would have no pole in the region lira col < e, with 

~ ~2~2. [This would correspond to correlations decaying with time like 
exp(-e2~zl t l ) . ]  One can hope in this case, and for more general r, to 
check numerically whether or not there is e > 0 such that Im s~ ~< P* - ~ for 
m # 0. [This check can be attempted either by looking at the eigenvalues of 
2 a or at the zeros of dm]. 

Instead of the map ~-~ ~ (mod 2re) we may look at more general 
expanding maps g of the circle. We assume that g is real analytic and that 
the derivative De g is everywhere > 1. Much of what we have said above 
stays true; in particular, formulas (5), (6), (7) remain correct. It is 

5 Fried's paper (Ref. 6) contains a correction of the estimate of the order of the entire 
functions given in Ref. 14. 
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interesting to notice that if we choose r = log  Dg we have the functional 
relation 

dl(s) = do(s-  1) 

so that the zeros and poles of ~ are related by a simple translation. In this 
case one can also prove that dl vanishes at P * =  1. (This corresponds to 
the fact that the Hausdorff dimension of the circle O is 1, as shown in 
Ref. 15. Actually, the problems discussed here also arise for the zeta 
functions associated with Julia sets; see Refs. 15 and 20.) 

5. CORRELATION FUNCTIONS IN THE PRESENCE OF NOISE 

In this section we return to the definition of correlation functions. For 
large T, 

p~c(t) ,~-~ B(ft+~Xo) C(f*xo) d r -  ( B > ( C >  

= p((B of ' ) .  C) - p(B) p(C) (8) 

Both in the case of a physical experiment and of a computer simulation, 
there is some imprecision in f~xo (noise for physical systems, roundoff 
errors--again treated as noise--for computer simulations). It is believed 
that this imprecision is what determines the choice of a physical p among 
many possible ( f ' )  ergodic probability measures. In other words, p is the 
zero noise limit of a stationary measure for a stochastic process obtained 
by adding noise to the deterministic time evolution (f ' ) .  This can be made 
rigorous for Axiom A attractors (p is then the SRB measure, see Kiefer (8) 
and Young (21)) but is thought to be true with greater generality. (There are 
exceptions; see Ref. 5 for a more extended discussion.) In particular, p 
should satisfy the Pesin identity 

5r = ~ positive characteristic exponents (9) 

The entropy h(p) and the characteristic (or Liapunov) exponents 
21~>22~>.-- are defined in Ref. 5. Each 2i is a possible value of the 
exponential rate of growth of (f'xo) with time for a small perturbation 6x o 
of the initial condition. Fo r  almost all x0, the largest characteristic 
exponent 21 is observed. In general one has h(p)<<.S positive 2i. The 
meaning of the equality (9) has been discussed by Ledrappier and 
Young (9) (in the Axiom A case, it corresponds to P * =  0). 
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For a chaotic system, the largest characteristic exponent 2~ is > 0 (we 
take this as definition of a chaotic system). If the level of noise is v (and the 
size of the attractor is of order 1) the noise will swamp the time evolution 
z ~ f~x after a time of the order of 

Ilog vl/s 

In view of what we have said the time T in (8) should satisfy 

T>> Ilog v[/2~ (10) 

for the selection of p to be ensured. Condition (10) is usually easy to fulfill. 
A more difficult condition is that t in (8) should satisfy 

t ~ Ilog vl/21 (11) 

Unless (11) holds, the computed correlation function will probably be 
dominated by the propagation of errors. 

In fact, a heuristic argument shows that the propagation of errors, if 
(11) is not satisfied, produces an exponential decay of P~c, with rate 
-h(p).  Indeed, the effect of noise at time t corresponds to averaging on 
unstable manifolds over a region of volume 

,~v exp(t Z positive 2i) 

Assuming that the unstable manifold is evenly spread over the attractor, 
this yields an averaged B - - ( B )  which tends to zero like [exp(t L" posi- 
tive 2i)] -1, i.e., like exp - th(p) if Pesin's identity (9) holds. 

In conclusion, when (11) is not respected, the true decay of pBc(t) is 
combined with the decay due to the propagation of errors to give a decay 
at least as fast as exp -th(p). Conversely, to estimate the true decay of 
pBc(t) we have to respect (11); in the case of computer studies this may 
necessitate multiprecision calculations. 

All this applies, for instance, to the discrete time dynamical system 
defined by the map 

x ~ a x ( 1  - x )  

of the interval [0, lJ  to itself, for 0 ~< a ~< 4. In some cases for which 21 > 0, 
it is known that the correlations decay exponentially [for instance, if a = 4; 
see Collet (3) for more general results]. But Axiom A does not hold here, 
and it is not known if correlations decay exponentially in general. 

Similarly, it would be interesting to have numerical evidence about the 
rate of decay of correlations for the H6non attractor and the Lorentz 
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attractor.  In fo rmat ion  abou t  complex singularities (poles) of t3Bc would  be 

valuable, but  p robab ly  difficult to ob ta in  numerically.  

Final ly,  let us re turn  to examples of Axiom A flows. Let ( f ' )  be the 
geodesic flow on  a compact  surface S of cons tan t  curvature.  If v is a 

smooth positive funct ion on S, a per turbed  flow ( f t )  is obta ined  by 

reparametr iz ing orbits so that  the local velocity is v. The correlat ion 

functions for the Axiom A flow (f~) are accessible to numerica l  
investigations. 
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